Previous Pause Next
Home >> News Center >>
Scripps research scientists identify protein that sends 'painful touch' signals PDF Print E-mail
User Rating :  / 0
Sunday, 19 February 2012 23:52

LA JOLLA, CA -- In two landmark papers in the journal Nature this week, scientists at The Scripps Research Institute report that they have identified a class of proteins that detect "painful touch."

Scientists have known that sensory nerves in our skin detect pressure, pain, heat, cold, and other stimuli using specialized "ion channel" proteins in their outer membranes. They have only just begun, however, to identify and characterize the specific proteins involved in each of these sensory pathways. The new work provides evidence that a family of sensory nerve proteins known as piezo proteins are ion channel proteins essential to the sensation of painful touch.

The experiments in the new study were conducted in fruit flies, a model system for the sensory nervous system of mammals, where piezo proteins are also expressed, as well as in certain cell types in the ear, kidney, heart, and other tissues. Future studies will focus on the roles of piezo proteins in sensing sound, blood pressure, and related stimuli that press and/or stretch cell membranes.

"Researchers in this field have been trying for decades to identify pressure-transducing ion channel proteins that exist in mammals, and these piezo proteins are exceptionally strong candidates," said Ardem Patapoutian, a professor in the Department of Cell Biology and the Dorris Neuroscience Center at Scripps Research, and a senior investigator for both papers. "We now have solid clues that we can follow up to learn how the mechanotransduction pathway works and how it is disrupted in diseases."

The two papers appear online in Nature on February 19, 2012.

Following the Path of Clues

Patapoutian's laboratory specializes in the study of sensory ion-channel proteins. When hit by a stimulus to which it is sensitive, one of these proteins typically will open its structure to allow charged calcium, sodium, or potassium molecules ("ions") to flow from the fluid outside the cell into the cell's interior. Ion channels that sense mechanical pressure are thought to open when the membrane in which they are embedded is distorted past a certain threshold. The resulting flow of charge can trigger other signals inside the cell, for example a nerve impulse within sensory neurons—and in a human, a sufficient number of these nerve impulses would be interpreted by the brain as a touch- or pressure-related feeling.

In a highly cited paper published in Science in late 2010, Patapoutian and his colleagues reported that two mouse proteins of previously unknown function exhibited properties of mechanotransducers. Cells to which these proteins were added drew in positively charged ions when subjected to mechanical pressure. Bertrand Coste, the first author of the paper, named the two closely related proteins piezo1 and piezo2—the prefix "piezo-" being derived from the ancient Greek word for pressure or squeezing.

"Since these proteins bore little resemblance to known ion channel proteins, the next step for us was to confirm that they are indeed ion channel proteins," Patapoutian said. The new studies take this step and more.

In the first of the new studies, lead authors Bertrand Coste, Bailong Xiao, and their colleagues confirmed that piezo proteins are indeed ion channel proteins, and very large ones. "It assembles into a 'tetramer' complex of four piezo proteins, which appears to be the biggest plasma membrane ion channel yet discovered," said Coste, a research associate in the Patapoutian lab. The protein sequences within piezo also suggest that its ion channel structure weaves through the cell membrane more than 100 times.

Collaborating researchers in the laboratory of Mauricio Montal, a Distinguished Professor of Neurobiology at the University of California, San Diego, found that even in the absence of other proteins, piezo proteins could self-assemble into this tetramer complex, forming ion channels in artificial membranes known as lipid bilayers.

The second of the new studies involved experiments with the fruit fly Drosophila. Sung Eun Kim, first author of the study, genetically engineered a line of Drosophila that does not express the Drosophila piezo (dpiezo) gene. "We found that their larvae showed a severe loss of responsiveness to mechanical stimuli that would be expected to generate pain-related signals, though they responded normally to other kinds of stimuli such as heat and mild pressure," she said. Kim is a graduate student who divides her time between the Patapoutian lab and the lab of Scripps Research Assistant Professor Boaz Cook, who was co-principal investigator of this study.

Kim also used genetic "knockdown" techniques in Drosophila to show that interrupting dpiezo expression in certain sensory neurons could reproduce this loss of sensitivity. Finally, when she artificially reinstated dpiezo expression in larvae that had been born without the gene, they displayed normal sensitivity to strong pressure. "It's the first demonstration of a specific physiological function of a piezo family protein," said Cook.

The Patapoutian lab now is now conducting detailed follow-up studies of piezo and other possible mechanotransduction proteins. "In the next several years, we'll be trying to determine all the biological processes and diseases in which these pressure-sensing proteins play a role," he said.

###

Other contributors to the first paper, "Piezos Are Pore-Forming Subunits of Mechanically Activated Channels," were Jörg Grandl, Kathryn S. Spencer, Sung Eun Kim, Manuela Schmidt, and Adrienne E. Dubin, all of the Patapoutian lab; Jose S. Santos and Ruhma Syeda of Dr. Montal's lab at UC San Diego; and Jayanti Mathur of the Genomic Institute of the Novartis Research Foundation (where Patapoutian is director of discovery research).

The study was supported by grants from the National Institute of Dental and Craniofacial Research, the National Institute of Neurological Disorders, the National Institute of General Medical Sciences, and by The Genomics Institute of the Novartis Research Foundation. The postdoctoral fellowships of Bailong Xiao and Jörg Grandl are funded by the American Heart Association and the National Institutes of Health, respectively.

Other contributors to the second paper, "The Role of Drosophila Piezo in Mechanical Nociception," were Bertrand Coste of the Patapoutian lab and Abhishek Chadha of the Cook lab. This study was funded by the National Institutes of Health and the Novartis Research Foundation. Kim and Chadha are funded by Scripps Research's Skaggs Institute for Chemical Biology.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see http://www.scripps.edu.

 
FairExcellent 

Add comment  |   Add to my library  |  Forward this article

login to leave comment

Collaboration, Projects, & Consortia

Indiana Clinical and Translational Science Institute HUB: A model for collaboration

TGen, Karmanos Lead $6M Melanoma Project

Sanford-Burnham Medical Research Institute and Pfizer Collaborate to Speed Drug Discovery

e2v aerospace and defense and Maxim Announce an Agreement to Extend the Product Life of Maxim Ceramic ICs

Syntaxin and Ipsen Ally to Develop Botulinum Toxin Therapeutics

BioAmber and LANXESS Partner for Renewable, Phthalate-free Plasticizers

Corgenix Partners with AXA Diagnostics on SkyLAB 752™ Automated Testing Platform

GeoVax and Vivalis Sign Deal for the Biomanufacture of MVA HIV Vaccine in EB66 Cells

EMD Serono and Fast Forward Commit $3 Million for Multiple Sclerosis

VisionGate Begins Collaborations to Evaluate 3-D Cell Analysis Test for Lung Cancer Screening

>> More in: Collaboration, Projects and Consortia

Featured Experts

Featured Laboratories

Grant & Funding Opportunities

Federally funded research & development centers employed more than 3,000 postdoctoral researchers

Federally-funded Research and Development Centers Spend $17.8 Billion in Fiscal Year 2011

NHGRI Unveils New-Look Genome Sequencing Program; Plans $416M in Funding

NYU to Study Genetics of Obesity-Related Cancers

Researchers Get NHGRI Funding to Study Effects of Alzheimer's Risk Testing

Venture Firms Pump $18M into Fledgling Arteaus Therapeutics

Servier and miRagen Sign $352M Deal for Cardiovascular miRNA Therapeutics

Tetraphase Awarded Initial $6M by NIAID to Develop Antibiotic Against Biothreats

Dermira Announces a $42m Series A Financing to Fund Therapeutic Advances in Dermatology

Salk Institute for Biological Studies to Accelerate Brain Research With $4.5 Million National Institutes of Health (NIH) Grant

>> More in: Grant & Funding Opportunities

Appointments

Sanofi (France) Taps David Meeker as New CEO of Genzyme Corporation

Drug Information Association Appoints Kaushik Desai as DIA India Director

Sentrx Announces Resignation of Charles T. Saldarini As CEO

EKR Therapeutics Announces Senior Management Change

Amgen Appoints Robert A. Bradway to the Company's Board of Directors

Anavex Life Sciences Corp. Appoints Dr. George Tidmarsh as Executive Director

Isis Biopolymer Appoints New President and CEO

RedHill Biopharma Appoints Key Opinion Leader Professor David Y. Graham from Baylor College of Medicine, Houston, Texas, as Lead Investigator for the US Pivotal Clinical Trial with RedHill's Crohn’s Drug – RHB-104

Apceth is Extending its Top Management: Prof. Ralf Huss Moves from Roche (RHHBY) to the Biotechnology Company apceth

BioIndustry Association Board Appointments

>> More in: Appointments

Recognitions

Journal names discovery that HIV treatment can prevent spread 'breakthrough of the year'

Abbott Laboratories's Absorb(TM) Bioresorbable Vascular Scaffold Honored with Wall Street Journal Technology Innovation Award

Chris Henney Receives 2011 Hall of Fame Award at Annual Biotech CEO Meeting at Laguna Beach

Scripps Florida Scientist Awarded $2.2 Million Grant To Study Hepatitis C

SAMHSA Awards Up To $25 Million To Expand Use Of Health Information Technology

Ablitech, Inc. Awarded $2 Million

The Michael J. Fox Foundation Awards AFFiRiS AG $1.5 Million for the Clinical Development of the First Parkinson's Disease Vaccine

SAMHSA Awards Grant To UCLA For Substance Abuse Prevention In Iraq

KGI Professor Awarded Patent For Stem-Cell Therapy Aiding Heart-attack Patients

Nobel Prize for chemistry 2011 goes to Israeli scientist Daniel Shechtman

>> More in: Recognitions