Previous Pause Next
Home >> News Center >> Features >> Hot Papers >>
Battle of the Sexes: Researchers Change 'Femaleness' or 'Maleness' of Fruit Flies PDF Print E-mail
User Rating :  / 0
Monday, 29 November 2010 06:13
Pity the female fruit fly. Being a looker is simply not enough. To get a date, much less a proposal, you have to act like a girl, even smell like one. Otherwise, you might just have a fight on your hands.

Like most animals, fruit flies must distinguish between a potential mate and a potential competitor. When a male fruit fly suspects he's encountered a female, he'll court; when he senses the other is a male, he'll fight. What triggers these sex-specific responses?

According to new research by scientists at Harvard Medical School, the answer lies with both pheromonal profiles and behavioral patterns. The researchers investigated the effects of taste and action by manipulating a gene that governs both the sex specificity of a fruit fly's body-surface hydrocarbons, or pheromones, and the sex-linked behavioral cues that issue through the dense nerve-cell network that constitutes the fly's brain.

"These findings underscore the importance of behavioral feedback in the manifestation of aggression," says Edward Kravitz, the George Packer Berry Professor of Neurobiology at Harvard Medical School.

The research is published in the November 23 issue of PLoS Biology.

María de la Paz Fernández and Yick-Bun Chan, post-doctoral researchers in the Kravitz lab, discovered these links to aggression when investigating whether a male fruit fly would ever attack a female. They focused on a particular gene called transformer, which is active in females but not in males. Through blocking transformer expression in a variety of different tissues in females, the researchers could specifically alter the "femaleness" or "maleness" of the pheromones, which in turn altered the patterns of aggressive behavior encoded in the fly's brain.

When they changed pheromone profiles so that females "tasted" like males, the researchers found that males would attack them. This indicated that pheromonal cues alone could label another fly as a competitor. But the researchers were surprised to discover that males also attacked "aggressive females" -- flies that still looked, smelled and tasted female but had been genetically altered to display male-like patterns of behavior.

When the researchers turned the tables by triggering the expression of transformer in males so as to feminize both the pheromonal and behavioral profiles, control males showed no aggression toward the transformed males. Instead, they began to court them. These results show that it is possible to completely reverse normal behavioral responses by presenting males with unanticipated and conflicting sensory cues.

"Future studies will aim at unraveling the neuronal circuitry that governs this type of decision-making behavior, as such decisions are essential for survival," says Kravitz. "With the powerful genetic methods available in fly neurobiology, it should be possible to dissect the decision-making circuitry at far greater levels of detail than have heretofore been possible in other species."

"This study addresses a classic question in animal behavior: What motivates an individual to do X rather than Y, or vice versa," said Laurie Tompkins, Ph.D., who manages Kravitz's and other behavioral genetics grants at the National Institutes of Health. "Because the general principles of how behaviors are controlled are conserved among species, Kravitz's conclusions about how flies make simple choices may illuminate how humans and other animals make more complex decisions."

The study was supported by grants from the National Institute of General Medical Science and by a Pew Latin American Fellowship awarded to Fernández.

Editor's Note: This article is not intended to provide medical advice, diagnosis or treatment.

 

The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Harvard Medical School, via EurekAlert!, a service of AAAS. The original article was written by Ann Marie Menting.

 

Journal Reference:

  1. María De La Paz Fernández et al. Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila. PLoS Biology, 8(11): e1000541 DOI: 10.1371/journal.pbio.1000541
    Abstract

Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards males and females can be completely reversed. Therefore, both pheromonal and behavioral cues are used by Drosophila males in recognizing a conspecific as a competitor.

 
FairExcellent 

Add comment  |   Add to my library  |  Forward this article

login to leave comment